If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=145
We move all terms to the left:
3x^2-(145)=0
a = 3; b = 0; c = -145;
Δ = b2-4ac
Δ = 02-4·3·(-145)
Δ = 1740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1740}=\sqrt{4*435}=\sqrt{4}*\sqrt{435}=2\sqrt{435}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{435}}{2*3}=\frac{0-2\sqrt{435}}{6} =-\frac{2\sqrt{435}}{6} =-\frac{\sqrt{435}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{435}}{2*3}=\frac{0+2\sqrt{435}}{6} =\frac{2\sqrt{435}}{6} =\frac{\sqrt{435}}{3} $
| 2/3(108/25)+5y=3 | | 6/x=18/9 | | 2-8x=11-5x | | R(a)=(7a+1)2 | | 4/x=40/10 | | 14+12x=-6+9x | | X÷2-3x÷4+5x÷6=21 | | 20+x+80=80 | | 5+x-12=x5 | | 5(2x+8)=24-2(x-8) | | 5+x-12=x0 | | 2x+14=3(x-4)-x+2 | | 7^3x-1=5^x-1 | | 80+x=9 | | x+2x-3=5x-2x+8 | | 5/14=10/a | | 3x-3(5-2x)=-7(4-x) | | 2(x+2.4=6.4 | | 3x-2(6x-1)=29 | | 5+x-12=x-4 | | 5+x-12=x-7=x-4 | | 7^(3x-2)=2401 | | 4-x/x+5=5/8 | | -13=3y+5 | | 7^3x-2=2401 | | 15x-7+72=180 | | 2(8x—1)+7(x+5)=-59 | | (z+12)/5=3.6 | | 2+6x-15=10 | | x-14=96.5 | | -15x+6=14 | | 12=-14x-1 |